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Study of symmetrical components of a
symmetrical three-phase system with a
generic triplet of impedances to ground




Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of n
iImpedances to ground

This part describes the approach necessary to study the
behaviour of an eleciric circuit in the event of a short-circuit
(three-phase, two-phase, single-phase, etc.) at any pointin
the network. A short-circuit in the network involves the
connection of a generic triplet of impedances to ground
and therefore an asymmetrical and unbalanced regime.



Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of
iImpedances to ground

Hypotheses:

= electric networks made up of
symmetrical elements (i.e.,
represented by circulant
impedance matrices);

= an asymmetrical set of |mpedances
is connected at a generic point in
the network (see figure);

= at the point where the asymmetrical
system of impedances is
connected, the triplet of phase
voltages across the impedances is

E Eb,E and the trio of curren’rs -

’rhrough the impedancesis I ,1,,1.




Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of

iImpedances to ground

Observation:

We have already shown that a
triplet of generic impedances, in
general, cannot be decomposed
into three decoupled networks
and therefore the network in the
figure must be studied using
symetrically coupled
components.




Study of symmetrical components of a symmetrical

three-phase system with a generic triplet of

iImpedances to ground

Observation:

Simplification - connecting the
star of iImpedances shown in the
previous figure to a generic
network point is equivalent to
inserting a star of voltage sources
E E E_(figure a) or astar of
current sources [ ,1/,,/. (figure b)
or any combination of voltage and

current sources (figure c).




Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of

impedances to ground

Observation:

Thanks to this assumption, the star E,

of the voltage generators in a)
can be decomposed by means
of the maitrix, i.e., by the relation:
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Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of n
iImpedances to ground

If we apply the principle of superposition, the circuit in the
previous figure can be decomposed into the symmetrical
components shown below. So the initial asymmetrical
three-phase network has been decomposed into three
symmetrical three-phase networks.
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Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of n
iImpedances to ground

Remarks:

= s long as the starting network is symmetrical, its internal
electromotive forces comprise a single sequence, which is the
direct sequence;

= The direct, inverse, and homopolar currents circulate in the three
respective circuits in the figure;

= the three networks in the figure are symmetrical and therefore can
be studied as monophase networks;

= Qs soon as the various quantities with symmetrical components are
calculated, the currents and voltages of the original system are
determined using the inverse transformation.
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Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of n
impedances to ground

Therefore, we can reduce the three-phase networks shown in the
previous figure to three single-phase networks.

Ild Ilg Ilﬂ
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n n n

If we use the Thévenin theorem, the three networks between points a
and n can be decomposed to the following circuits:
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Study of symmetrical components of a symmetrical
three-phase system with a generic triplet of n
iImpedances to ground

In these circuits, the term £ is the voltage before insertion of the
asymmetrical impedances (i.e., before the short-circuit) af the
considered point in the network. This voltage only exists in the direct
sequence circuit. Zd,Z Z are the equivalent impedances of the
network for each sequence as seen from the considered point. The
three equivalent impedances of the network can be calculated if the
schematic of the network is known. We should then compute the 6

unknowns E'; EY.E'., I'4,1',1's knowing the 4 quantities 2z, Zb Zc,Zn

As will be shown in the next sections, it is needed to determine three
vectors (6 scalars) according to the characteristics of the short-circuit.




Outline

Three-phase short-circuit




Three-phase short-circuit 13

Consider a three-phase short-circuit shown in the figure (q)
where, at a generic point in the network, a starimpedance
with value 7 is connected to ground in series with an
impedance Z,.

The impedance Z is the impedance of the short-circuit.

a a

(a) . (b) :

E =0 E. =0
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Three-phase short-circuit 14

Observation: as long as the upstream network is
symmetrical, the center of the star of the three
impedances Z has the same value as the voltage of the

star center of the network. Therefore, the impedance Z,
can be eliminated.

(a) . (b) :

E =0 E. =0
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Three-phase short-circuit s

Since the considered short-circuit is symmetrical, the triplet
of voltages E ,E,,E and triplet of currents 1 ,7,,1 at the
point of the short-circuit only has direct sequence
components, and there are no indirect and homopolar
seguence components.

a a
(a) : (b) ] b
| 1 C | ] |
I I ' AN I s s AN
Vi Z Z Z Z Z o
$ ' E. = F, ‘ E', = E\
— Zn —_ Zn
E =0 E. =0
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Three-phase short-circuit

The current of the short circuit is, therefore:
E,

=7

For the direct sequence component:

[ =1,=

E - E Z [
() . (b) b
1 l C 1 l C
I ] ' J I' \ I ] I, l I' \
Z Z Z Z Z Z
' t E :_E'd | : | E :_Eld
_ Z, _ Z,
E.=0 E'.=0
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Outline

Ungrounded two-phase short-circuif




Ungrounded two-phase short-circuit  [KER

We will consider the two-phase short-circuit shown in the
figure where, at a generic point in the network, an
impedance is connected between two phases with a
short-circuit impedance of 27 .

According to Kirchhoftf's Law,
can analyze the circuit in the
figure 1o determine three

vi‘v&,‘n,
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equations linking the voltages,
currents, and short-circuit |15 1617181911001 111 12
impedances:
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Ungrounded two-phase short-circuit

The symmetrical component transformation for

currents is infroduced, using the first two I =0
relations on the preceding slide: 7 +7 =0
b c
- - - oA - - *
Ly R IR 0
Tal, :[TS] : Tb :g 1 a a° Tb :g 1 a a° 1,
7 T l1a a |7T 1 a a || -]

For this particular case, this relation enables us to obtain
the first two equations in the sequence domain:

I,=0
(a—az)_.

3 g

I[,=-1 =

d




Ungrounded two-phase short-circuit

The link between phase currents and symmetrical

component currents is as follows:

I, L | [1 1 1| & 1 1 1 | O
I, I, |=|1 & a |1, || 1 & a 1
T I ||l aa|T 1 a a | -,
Therefore:

I =0

Tb':az—a)fd



Ungrounded two-phase short-circuit |48

To obtain the third equation in the sequence domain, we
can use the third equation in the phase domain,
specifically:

E -ZI,=E, -7

C C

We can write this equation in matrix form:

E,-E=Z(I,-T)=27, E,-E=[01 -1]

c




Ungrounded two-phase short-circuit

If we use the sequence fransformation for voltages:

E,-E=| 0 1 -1 |

:[O a’-a a—az]

L & I

& &= =

1 1 1 E,
=lo1-1]1a a|E
1 a a° E




Ungrounded two-phase short-circuit |28

In summary, the necessary equations in the sequence
domain are as follows:

7.=0

L=-1,

(E, - E)) =2,

2Z

These three
equations can Ty 7 7
be seen as Zd[>—* Zif- \ L
coupling ()T_E E' E' E'
between
sequence . | . »
CII'CUI"'S. Direct Inverse Homopolar

sequence sequence sequence




Ungrounded two-phase short-circuit  [E28

The solution of the circuit enables determination of the
direct and inverse sequence currents (the homopolar
sequence current is zero):.

£ T

Tl:_ — =
Y Z+Z+27
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Direct Inverse Homopolar
sequence sequence sequence



Ungrounded two-phase short-circuit  [E2

The two voltages of the direct and inverse sequences can
be determined using the figure:

P = E(Z +2Z) EZ
’ ‘7 +Z +2Z " Z,+Z +2Z

2Z —|
— _|I|:| _|I| — _l:il
zd & T ZD ———8

[

Direct Inverse Homopolar
sequence sequence sequence



Ungrounded two-phase short-circuit [

The short-circuit current in the phase domain is given by:

- j/3

I, = —(a—az)E :(a2 —a)

E _ E _
Z,+7.+27 Z,+7.+27

2Z —|
— _|I|:| _|I| — _l:il
Zd - S e

|

Direct Inverse Homopolar
sequence sequence sequence



Outline

Two-phase short-circuit with connection
to ground




Two-phase short-circuit with m
connection to ground

We will consider a two-phase short circuit shown in the
figure where, at a generic point in the network, an
impedance is connected between two phases and the
ground with a short-circuit impedance of Z.

According to Kirchhoff's Law, we
can analyze the circuit in the

: : =N FIEE RN
flgure TO deTermlne three ato Strumenti Tabella Finestra ?
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Two-phase short-circuit with m
connection to ground

Using the sequence transformation for currents with 7, =0,
we obtain:

I =0
-4 T -4 -
1, 0 1, 1 1 1 1,
L |1=| L |=[z]| T, |=| 1 & a | I,
T I 7 1 a a | T

Thus: T+T.+T =0
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Two-phase short-circuit with
connection to ground

Using the inverse sequence transformation for voltages, we
obtain:

Wl
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Two-phase short-circuit with
connection to ground

Recall thaft:
E, :Z(Tb' +TC')
E=3(E+E+E) E=(E+EE)
We obftain:
F,=(E,+2F)) By= 5B+ B+ B+ 2Z(T,+T)

The term (Tb +Z) can be determined using the inverse
sequence transformation for currents

I I, 1_1 1 1 | L 1_1 S R (A
I, :[T,y]_1 I, =3 1 @ a> | I, =3 1 2 a || 1
7 T 1l a a |7T 1 a a || I




Two-phase short-circuit with
connection to ground

Therefore:

— I +1
]0: b3 c

Finally, by substitution:

E = %(E(') +E,+E +671)

If we substitute the following

E = %(E +(a+a?)E,)=E, P E =E,
in the preceding expression for E, we obtain:

3E,=FE,+2E,+6ZI, B E,=E,+37I,



Two-phase short-circuit with E
connection to ground

The three equations of the two-phase grounded short-
circuit in the sequence domain are summarized as follows:

0 + ]d + i - O
i = Ed
E,=E,+37ZI,
These three ~ —
. — I |
eqguations can — T — — °
z Zi o 00— -
be seen as Y Hew £ 2
coupling O [E'u ‘ £ B
between |
sequence $‘ ]
circuits.
Direct Inverse Homopolar

sequence sequence sequence



Two-phase short-circuit with
connection to ground

The circuit solution is as follows:

7 E
‘ > +Z(ZO+BZ)
© Z+Z,+3Z
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‘Edll
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Direct Inverse Homopolar
sequence sequence sequence



Two-phase short-circuit with m
connection to ground

The inverse and homopolar currents can be determined if
we notice that the impedances Z,+3Z and Z, are @
current divisor for [ :

Direct Inverse Homopolar
sequence sequence sequence



Two-phase short-circuit with m
connection to ground

The direct, inverse, and homopolar sequence voltages are
determined using the circuit:

E,

i

E-ZI =E
_Zojc;

0

QTEZ rd%‘d ETE’ ) TE ’

" ]

Direct Inverse Homopolar
sequence sequence sequence




Two-phase short-circuit with
connection to ground

The short-circuit currents in the phase domain are:

7
Sy S E—
_ - _ — Zi+ O+BZ
I, 1, 1 1 1 E
L =[] I, 7| 1 &® a Zﬁ%( ,+37)
I I 1 a a Z +Z7Z,+37
- - —. Z,+3Z
Ny B
+Z, +37



Two-phase short-circuit with m
connection to ground

Therefore, the phase currents for a two-phase strongly
grounded short-circuit (i.e., assuming that z=0) are as

follows:
I, =0
_ _ Z; - . Zy+3Z
Ib=_1d— p— —-I-(de—(lld
Zi+Zy+3Z Z; +ZO+BZ
_ Z; , Zo+3Z
:Id = = -+ a° —a—= — = | =
Z;+7Zy+3Z Z;+7Zy+3Z
_ 7 —Zi ta*(Z; +Zy+3Z) —a(Zy +32)]
| Zi+Zy+3Z B
. _Z_i(a2—1)+Z_0(a2—a)+32_(a2—a) B
d Z;+7,+3Z -

E[Z.(a? = 1)+ Zy(a® — @) + 3Z(a? — a)]
Z4Z;+Zy+32)+Z;(Zy+32)




Two-phase short-circuit with n
connection to ground

Therefore, the phase currents for a two-phase strongly
grounded short-circuit (i.e., assuming that z=0) are as

follows:

_ _ Z; _ _ Zy+3Z

Icz_ldz_i+z_0+3z_+ald_a 47+ Zo+37
_ Z; Zo+3Z

:I&(—— = _+a—a2_ = _):

Z:+ 7+ 37 Z:+ 7+ 37

_-Z; + a(Z; +ZO+SZ)—a2(ZO+BZ)

_Id_ Zi+Zy+ 37 |
_NZi(a— 1)+ Zy(a — a®) + 3Z(a — a?)]

= la Z:4+7Zy+3Z -

B E[Z,(a—1) + Zy(a — a?®) + 3Z(a — a?)]
B Z,(Z: +Zy+32)+Z;(Zy + 32)



Outline

Single-phase short-circuit to ground



Single-phase short-circuit to ground o

The schematic of the short-circuit is shown below.
For this case, the equations linking voltages, currents, and
short-circuit impedance in the phase domain are:

b' 0 I =0 /a
[ =0

Z

S S S S



Single-phase short-circuit to ground 42

We can use the inverse sequence transformation for

currents:
I, I, 101 1 | L 11 1|71
— | S I R | ) — |1 , a
I, =[] 1, =3l 1 a & | I, 75| 1 a a | o
I T _1a2a_jc' _1a2a__o
- - - - - - _ 4
I, =0
Therefore: N 7 =0
I, =

I
w |QN.| w |QN_| w |QN.|
U
o
[
I
I~

2~
I



Single-phase short-circuit to ground

The last constraint equation in the sequence domain is

determined using the sequence transformation for

voltages:

a

b

c

1 1
a’ a
a a

2

If we make the following substitutions:

I _
[ == E =7I
° 3

The result is:



Single-phase short-circuit to ground 44

The three equations in the sequence domain are
summarized as follows:

>
I
~| I

~,

Sl
1

E+E +E =37
These equations can be seen as a coupling of the
sequence circuits.

Z, ld—oj A . Z, L
C)TE E's
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Single-phase short-circuit to ground 45

The circuit solution enables the determination of the
sequence currents:




Single-phase short-circuit to ground

The voltages of each sequence are:

E=E-Z]T
E=-Z]
Eo = _Zojo




Single-phase short-circuit to ground

The short-circuit current in the phase domain is as follows:
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